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 Diagnosing and correcting failures in complex, distributed systems is difficult.  In a 

network of perhaps dozens of nodes, each of which is executing dozens of interacting 

applications, sometimes from different suppliers or vendors, finding the source of a system 

failure is a confusing, tedious piece of detective work. The person assigned this task must trace 

the failing command, event, or operation through the network components and find a deviation 

from the correct, desired interaction sequence.  After a deviation is identified, the failing 

applications must be found, and the fault or faults traced to the incorrect source code. 

Often the primary source for tracing failures is the set of event log files generated by the 

applications on each node.  The event logs from several platforms and from multiple virtual 

machines on those platforms must be filtered, merged, correlated, and examined by a human 

expert.  The expert must locate the point of failure within the logs and then deduce which 

interaction or component failed, then re-assign the problem to the persons responsible for the 

failing component sets.  Those individuals must then, in turn, use the original logs filtered and 

merged using different criteria to find the failing code modules, analyze the cause of the failure, 

and correct the code or even the architecture of the failing components. 
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Reducing the human effort involved in diagnosing these test failures through automated 

analysis of data in the logs is the goal of this project.  In this paper we propose generating 

grammars from test successful log sequences, then using the grammars to detect points of 

deviation in logs from the failed tests.   
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THE PROBLEM DIAGNOSIS QUAGMIRE 

1.1 Introduction to the problem – Quagmire and Frustration 

It is Monday morning and a programmer arrives at her office and opens her email.  Several 

messages are in the middle of the list assigning her problem reports.  On the bug tracker web 

pages the problems are all marked critical or major and they state “Host Twillig down after 

reboot on seventh iteration of reload test”, or “Virtual chassis split after failover”, or some other 

cryptic problem summary that does nothing to explain what really happened, where to start 

looking for the problem, or even when the problem occurred.  The message might be to the effect 

that “Test setup 12 failed the weekend regression test on Saturday morning.  The test setup is still 

in the failed state, and you can access it at IP address 192.168.40.35.  Please investigate. Problem 

report 263492 has been opened to track this”.  But test setup twelve is a mesh of eight packet 

switches each of which is running 100 different control applications, and the test failed with 

some unknown error on the seventh iteration of the test suite execution.  Each switch has a dozen 

processors and as many application specific integrated circuits (ASICS).  Each is its own set of  

application tasks to implement the routing and switching protocols and program the ASICs to 

route the network packets through the network. 

Alternatively, the system under test could be a telephone switching network or a packet 

switched data network.  Tracing a telephone call through an SS7 telephone circuit switched 

network involves dozens of systems to route and link the call through the switching systems, 

more systems to provide the billing information, and each system might have a dozen embedded 

processors including network line interfaces, digital signal processors, and switch controllers.  

Each switch in the chain might be manufactured by a different vendor with a unique processor, 
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with software written in a different programming language, executing a different operating 

system.  And these same switches may support thousands of simultaneous and distinct voice 

conversations, each of which must be routed, tracked, terminated, and secured.  The test setup 

reset two days earlier and all the internal state of the system at the time of the failure has gone 

into the proverbial bit bucket. 

The programmer must somehow isolate the failure, and locate the programming error, design 

flaws, or even the requirements errors that precipitated the failure by retracing the system 

interactions backward from the anomaly detected by the test script to the input that started what 

might be a cascade of malfunctions or errors.  There must be some way of looking back in time, 

of tracing the system through its steps from the time the test halted, maybe days or hours earlier, 

up to actual point of breakdown.   

Our hypothetical programmer must often employ formidable detective skills to determine 

when a sequence of failures began, and which software component went awry. She must the 

identify the root cause of the problem and either correct it herself or assign the problem report to 

the programmer responsible for the failing component, or even assign it to the person who wrote 

the failing test script.  If she assigns it to someone else, that person may go through the same 

type of investigation just described to locate the module or task failure that caused the test script 

to halt. 

1.2 Event Logs –Threads through a Maze 

Developing networked systems and delivering them is an enormously complex task.  

Locating failures in newly developed software while it is in the system the test and delivery 

process, when all the components have been integrated, requires tracing the execution flow 

through, and the data exchanges between the components.  And although the use of source level 
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debuggers and other program verification tools may be the best choice during the software unit 

testing phase, these are less effective during system testing with the network under traffic loads.   

The event logs, the internal state display and program trace statements inserted into program 

code by programmers since the early days of programming, become a primary source of 

information for problem diagnosis.  Software developers have always put print or log statements 

into their code to provide run-time system state change and debugging traces through the 

application programs. 

These log entries or events provide a trail through the program code showing which program 

modules executed and the input data triggering that execution.  The log entries are often put in as 

a form of self-defense by the programmer against the inevitable finger pointing that arises during 

system verification, for they demonstrate that some function did indeed execute and may list the 

input and output parameters of that function. 

For those of us who have worked troubleshooting embedded systems, notably 

telecommunication systems such as telephone switching systems and network packet switches, 

the use of event logs in problem diagnosis is assumed.  Identifying the source and location of 

problems is well-nigh impossible without these event log trails starting at some input stimuli, 

winding through the internal component interactions, and finally the output signals and data. 

Complex, distributed systems can create voluminous event log files to record the occurrence 

of significant state change information at run time.  These systems might link several hardware 

platforms each with dozens of executable components exchanging information between peers 

both within and between platforms.  As shown in Figure 1 each platform or component may have 
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its own set of event log files, recording interactions and progress as specific operations or 

requests are completed. 

 

Figure 1 - Event Log Files in a Mesh of Packet Switches 

 

When a test failure occurs, finding the sequence of interactions within a system test case that 

led to the malfunction is challenging.   The event logs from several platforms and from multiple 

virtual machines on those platforms must be filtered, merged, correlated, and examined by a 

human expert.  That expert must locate the point of deviation from the norm within the logs and 

deduce which interaction or component behaved unexpectedly.  The expert must then assign the 

problem to the persons responsible for the failing components.  Those individuals must then, in 

turn, use the original logs filtered and merged using different criteria to find the failing code 
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modules, analyze the cause of the failure, and correct the code or even the architecture of the 

system. 

Reducing the human effort involved in diagnosing these test failures through automated 

analysis of the data in the logs is the goal of this project.  Other researchers have proposed and 

implemented a variety of methods for log file analysis, including source code analysis, pattern 

analysis, grammar inference, and modeling the system through state machine generation. 

In this paper we describe a method for automatically generating a grammar to characterize 

successful log sequences.  We can then feed a log file from a failing system to a parser generated 

from the grammar and automatically detect deviations from the successful cases, a deviation 

being a missing log message, an unexpected log message, or a message that is out of sequence. 

1.3 Paper Organization 

Section 2 is a review of related work. 

In Section 3 we describe the problem we are trying to solve in detail, propose a work flow for 

processing a log file into a grammar, and describe the work flow steps in detail. 

In Section 4 we describe tests and measurements of the work flow, generating grammars 

from existing event logs for some specific system tests.  By injecting errors into the system test 

logs we determine if the generated grammars for those tests can locate the failing test steps. 

Section 5 contains our conclusions and a description for future work. 
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PREVIOUS WORK 

2.1 Background 

Writing software is hard.  Computer systems may be the most complex artifacts ever made 

by man and the bulk of that complexity is found in the software [1].  Constructing a large 

software system is time consuming, labor intensive, requires highly trained personnel, is prone to 

error, and is, therefore, expensive. 

And though software is now ubiquitous, with program code hiding in almost every one of the 

even moderately complex devices we use to manage and navigate our civilization in the twenty-

first century, it is still a bit of a foggy concept.  Software is ordered lists of instructions to 

machines written in an ever-increasing variety of formalisms we call programming languages. 

Software components are stacked, linked, and communicate with each other and with us through 

voltage changes on often microscopic wires.  At its most basic level software is insubstantial 

fluff, formalisms translated into electric charges flowing through enormous arrays of transistors 

and capacitors concealed in tiny integrated circuit chips.  It has been described rather poetically 

as a hidden, delicate, dynamic dance [2] of instructions and data within the machine.  

Understanding the transformations, exchanges, and manipulations taking place within the 

machines that are now part of almost every human enterprise has been and still is intellectually 

daunting. 

When software is under construction, the developers of the program code must verify that it 

is functioning correctly.  They must monitor the program state changes within the ICs, verify that 

the variables within the software are changing as specified for a given input.  If the program state 

is incorrect, the developers must locate the errant instructions and correct them.  This is often 
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very confusing and difficult.  There is a large software tools industry just for this initial 

debugging effort but using such tools on an integrated and running system impacts performance, 

resource usage and requires tapping into the system in a controlled environment.  Including the 

debugging symbol table in a system, for example, increases the memory usage and program 

image size of an executing system.  One of the executables created for this project, for example, 

is 50% smaller when compiled and linked with full optimization and no symbols than it is with 

the table.  Additionally, accessing the system with a debugger might be very difficult, especially 

on an embedded system with limited outside connectivity. 

Before these debugging tools came into existence, ever since software became an integral 

controlling component in embedded and networked components, programmers have been using 

console logs for debugging and locating programming errors, as documented by Gill in 1951 [3].  

Gill describes one of the most common debugging tools, “trace debugging”, akin to C-language 

“printf” statements, where programmers insert print commands to output run-time state data on a 

system’s console device.  These simple print calls have evolved into widely varying and complex 

logging systems and libraries, but the output format and content are still largely determined by 

the programmer’s needs at the time the software was originally written and tested. 

Today’s systems might be composed of hundreds of software components developed by 

hundreds of programmers scattered across continents and countries, even when the components 

are created within one corporate organization.  This diversity of software sources produces a 

variety of log styles and content even when a common event log format is used.  And because 

capturing and recording these traces consumes system and network resources, the debug logging 

is often reduced or even disabled in delivered systems. The result can be and often is a confusing 

mass of text files giving a less-than-complete trace of hardware events and software responses to 
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those events.  There is valuable information in these log files and getting that information out of 

the files is an ongoing research topic. [4] [5] [6]. 

Embedded systems pose another problem in that there may be little persistent storage space 

on the device for log data in flash memory or static RAM.  There may be little network 

bandwidth for saving log data on an external system.  The act of recording the log data may 

consume scarce computational resources that should be allocated to the device's main function.  

Log data may therefore be terse and sparse. 

Reading and interpreting the logs is another problem.  When presented with a large text file 

where each line may come from a different source, how does one filter the significant signal 

from the noise?  This is also an area of research and the subject of this praxis.  Can this be 

automated?  Can we use methods familiar to most software developers in doing so?  Can we 

automatically generate something like a programming language grammar and create a recognizer 

for valid log event sequences that will reject the failing sequences where they begin to diverge 

from the acceptable sequences? 

2.2 Language Based Approaches 

These questions are not new.  Defining a programming language for log processing is an idea 

that goes back at least two decades.  In 1998 Andrews [7] [4] described a framework, method, 

and language for formally specifying log file analyzer programs for use during system testing.  

The language, LFAL, provided a way for formally specifying test oracles for processing log files 

from test executions.  Before test evaluation, the user must write an LFAL program, a formal test 

output description describing the expected log output from the test.  Andrews argued that testing 
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using log file analysis was a useful method for software verification, providing an intermediate 

form between ad-hoc testing and formal verification methods1.   

Andrews and Zhang [8] describe using a formal log analyzer in conjunction with random 

testing, showing by experiment that this technique is competitive with other formal and informal 

unit testing methods.  These techniques require manual specification of custom log file 

analyzers, defining a set of finite state machines modeling the communicating processes 

executing during a given test.  Manual specification implies a substantial effort by the system 

developer in creating and then maintaining these models for a set of interacting components 

during system testing. 

Also using the programming language theme, Barringer and others [9] [10] [11] used run-

time traces to generate test cases.  They proposed and implemented the formal specification 

languages RuleR and LogScope for verifying spacecraft software through analysis of telemetry 

data received from systems under test.  With LogScope the use of the already present telemetry 

data, very closely related to event log messages, reduces the storage and instrumentation 

requirements in the software by taking advantage of data already transmitted by the systems.  

This technique provides a method for low-impact formal verification.  The formal specification 

languages they describe are defined by a type of grammar which precisely defines the acceptable 

and unacceptable telemetry data expected from a system in response to a transmitted command 

or set of commands.  The languages allow formal specification of statements like “after 

command c accept response messages x, y, and z in any order, but fail if messages u or v are 

                                                 
1 The LFAL implementation produced Prolog code for processing the test log files, which was quite slow.  Later 
work by Aulenbacher [3] produced an LFAL implementation generating C++ code, which ran more than eight times 
faster than the original Prolog generation. 
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seen.”  The technique requires manual coding of the LogScope script by the development 

engineer on a test-by-test basis, which is acceptable in unit testing but becomes onerous when 

testing large networked systems.  It is also difficult for a development engineer not directly 

involved in acceptance test development to write such acceptance test oracles, which may be 

required in organizations maintaining separate engineering and testing groups or departments.  In 

addition, the unit test suites and acceptance test suites may be in separate code bases maintained 

by geographically separated groups.  We should note that LogScope techniques are similar to 

those employed by commercial software testing tools which verify command results against user 

interface output on Web pages or mobile device user interfaces such as Worksoft Certify [12], 

Ranorex Studio [13],  or CA Technologies Application Test [14].  All of these require manual 

coding of test scripts and result interpretation2.  

Avoiding manually coded rule systems and patterns, Stearley describes the ironically named 

Sisyphus toolkit3 for relieving the “never-ending curse” of tedious log analysis [15] [16].  Using 

a modification of Teiresias, an algorithm developed by IBM for string pattern matching in 

bioinformatics [17], Sisyphus searches for words in blocks of log message text to find patterns 

using Vaarandi’s Simple Logfile Clustering Tool (SLCT) [18] and then displays the messages 

with the correlated patterns in LogView [19], an event log visualization tool.  Sisyphus eliminates 

                                                 
2   (Anecdotal: The author’s employer has a team writing Python test scripts for engineering acceptance tests, and 
another team writing a different set of scripts for system testing.  The development engineers are expected to write 
Python scripts for unit testing, and another group writes the integration tests executed before the final quality 
assurance group executes another set of tests which must pass a specific quality level before product release.  None 
of these tests use the event logs generated by the system, all depend upon either user interface output or external test 
equipment measurements) 
3 In Greek mythology king Sisyphus was cursed by the gods for his deceitful wickedness, condemned to pushing a 
boulder up a hill for all eternity.  When he approached the top of the hill, the boulder would roll back down, and he 
had to begin anew.  His name is now associated with pointless and futile labor. 
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the manual coding of rules identifying expected or problematic sequences of messages, but the 

patterns it reveals are not suitable for finding the sources of failures exposed during testing. 

2.3 Grammar Based Approaches 

The idea of grammar inference, discovering a grammar from the output of existing software 

artifacts, has been explored in other contexts for decades.  More than 50 years ago, Gold [20] 

investigated whether it is possible to synthesize a formal language from large textual documents, 

a language that accepts only strings of words found in the original documents.  He found that 

identifying a regular language from a text containing all possible strings in a language was 

impossible.  But others have made similar attempts with regular languages, programming 

languages and domain specific languages.  Ocina and Garcia [21] demonstrated that regular 

languages can be identified from large text documents in polynomial time provided that positive 

(accepted) strings and negative (rejected) strings are identified as input.  Colin Higuera [22] 

described the research trends in grammatical inference, again indicating that finding context free 

grammars from sample programming language code is a hard problem.  Undaunted by the 

difficulty of these large problem domains, Javek, Crepinsek and others, [23] [24], explore 

context free grammar discovery for domain specific languages (DSL) using genetic algorithms, 

and demonstrate the suitability of the approach.  They propose this approach for enhancement 

and maintenance of legacy systems. 

Also following the programming language theme, Memon [25] describes a generic method 

using grammar inference for log message categorization and anomaly detection.  Memon's goal 

was to find unexpected or unknown log entries in an event log, one of the goals of this project.  

Memon’s method processes logs from successful tests or transactions generating a grammar 

describing those log entries.  The grammar can be used to process another log and find 
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previously unseen log messages, often a harbinger of runtime problems or failures. Memon did 

not detect acceptable sequences of messages.  In short, because there is no temporal sequence or 

ordering of the messages, there is no finite state machine or process description in Memon’s 

generated grammar, only a list of expected and syntactically correct log messages.  It identifies 

the acceptable event log messages in the grammar, but not syntactically legal sequences of 

messages.  The grammar cannot find missing events or acceptable log messages that are received 

out of order, both of which may indicate an anomaly. 

2.4 Text Mining Approaches 

Non-language-oriented event log mining methods for problem diagnosis in large systems are 

also an ongoing research topic.  Xu, Huang and others [26] [27] combine event log mining, 

source code analysis (emphasis added), and machine learning to detect operational problems in 

Hadoop systems and Google servers.  The source code analysis provides insight into the software 

structure, which allows discovery of software operational features, and possible problems.  They 

produce a decision tree mapping the problems to the pertinent log messages. 

Maruyama and Matsuoka [28] use function call traces, comparing traces between successful 

and failed test cases.  The call traces record function entry and exit on running systems, saving 

call parameters and results.  On any real-time system tracing every function call can adversely 

affect performance, up to 7% according to the authors.  This figure seems optimistic, but even 

this impact can affect the correctness of real-time systems, which must often provide a computed 

result within fixed time limits.  Since event log creation is embedded in the application software, 

logging always impacts performance to some degree.  The logging system must be designed with 

performance requirements in mind. 



 

13 
 

Fu, Lou, Wang, and Li [29] describe methods for finding anomalies in unstructured text logs 

taken from a generic distributed system. They use text mining techniques and string distance 

algorithms to classify and convert event log entries into a log key form, which is basically the 

format string in a C language printf statement.  They then build finite state machines for 

individual event sources from the logs, using an algorithm described by Mariani and Pezz'e [30].  

Through performance analysis on the FSMs, they attempt to detect possible system faults from 

the logs.  This is very close to our goal, except that we want a generated grammar that will 

process a log file and find syntactically incorrect sequences. 

Vaarandi and others [31] [18] present several event log mining algorithms, primarily focused 

on network security applications, but applicable to other log analysis purposes as well.  SLCT 

and LogHound are log clustering algorithms that were employed in the Sandia Labs Sisyphus log 

analysis toolset, (see Stearley [16] above).  Attempting to improve on SLCT they presented 

LogCluster [32] with improved wildcard matching, data clustering, and line pattern mining from 

textual event logs.  Their goal was to mine patterns and find system faults in very large event 

logs.  On log files containing tens of millions of events, the algorithm found more than 100 

patterns in less than two hours of run time.  This is useful in the security arena, where attacks on 

the system generate suspicious access patterns identifiable in the system logs. 

Jiang, Munawar, Reidemeister, and Ward [33] describe a method for defining a set of 

invariants, long-term stable correlations, collected from logs over a long period of time using 

artificial neural networks. Outliers from these invariants are used to identify errors.   They were 

trying to detect failures, but in our case the fact of the failure is known, and we are trying to find 

where the log deviates from a successful example to locate a failing component from among 

many candidates on many machines. 
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Makanju and others [34] describe a refined pattern matching algorithm (IPLoM) for use with 

very large log files that cannot fit entirely into a computer's memory, improving upon SLCT and 

LogHound.  This algorithm splits the log file into partitions in multiple steps, first partitioning by 

line length in words, then by word position in each line, then by word pairs.  Finally, a line 

pattern is defined for each partition.  SLCT, LogHound, LogCluster, and IPLoM are intended to 

find patterns, clusters and groups of entries within a log, but do not create a temporal sequence of 

the clusters. 

In his 2012 PhD dissertation [35] Reidemeister goes further in describing methods for fault 

diagnosis in generic enterprise networks and supporting decision methods for recovery actions.   

He describes methods for modeling event logs taken from some of the references above, methods 

for using historic log entries of failures to locate new faults, and then provides methods for 

decision selection and system recovery actions.   

On a related topic, in his 2016 textbook van der Aalst [36] describes the use of event logs for 

business process discovery, which he dubs process mining.  He converts the event logs into a 

Petri Net which describes the business process producing the log.  The Petri Nets can be used to 

find process bottlenecks and inefficiencies.  He then uses the Petri Nets to discover deviations 

from the established processes in subsequent logs, finding where the processes are likely to be 

violated.  He employs the A* Algorithm (and other methods) for converting a set of event logs 

into a Petri Net.  These algorithms are of interest in this project because many executions of the 

process can be fed into the algorithms, generating a Petri Net that will accept many slightly 

differing versions of a process.  In a real-time system, we run into this type of issue because 

system timing may vary between executions of a specific test case, resulting in a change in the 

temporal arrangement of log entries, all of which are “legal” for proper system operation. 
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Hamooni, Debnath, Xu, Zhang, Jian, and Mueen [37] present LogMine, a tool for finding 

patterns in large heterogeneous event logs.  As part of their process they tokenize every log 

message using white-space separation.  They then process the tokens to detect a set of pre-

defined types including dates, timestamps, IP addresses, and numbers.  They replace the value of 

each token with a name describing the it.  Dates are replaced with ‘date’, time stamps are 

replaced with ‘time’, IP addresses with ‘IP’ and so forth.  Messages with a common originator 

and identical content after the replacements are assumed to be identical.  The user selects the 

patterns for the pre-defined types.  This is like the method employed by Memon for textual 

substitutions and form recognition. 

2.5  Other Approaches 

Another approach for employing event logs to locate system faults is to record patterns 

preceding known failures and search for those patterns in a running system’s log output.  

Gurumdimma, Jhumka, Liakata, Chua, and Brown [38] describe such a method for detecting 

patterns in failure logs.  They scan large sets of log files looking for patterns that precede a 

known failure and use the patterns for failure prediction by scanning the logs on a running 

system.  They also preprocess and tokenize the log files to remove redundant data, group similar 

messages and give them a common identifier,  removing identical and redundant events.  This is 

the inverse of our goal, which is to find where a deviation from the norm begins, not to find 

known deviations.  Note that on an embedded system in a test lab, resources for storing the logs 

may be scarce and large data sets containing known failures may not be available. 

Pecchia and Russo [39] describe an experiment injecting software faults into systems.  They 

conclude that system characteristics such as software architecture, placement of the logging 

instructions, and support from the execution environment significantly increase the accuracy of 
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logs at runtime.  This seems obvious to anyone who has tried to trace the root causes of system 

failures from large log files.  If the system architecture does not support accurate log collection, 

or if the logging instructions are not meaningfully placed the log files might be incomplete or 

flooded with unhelpful information.  From the author’s experience, a log flooded with useless 

information is probably the more common case, and filtering such information is a necessary 

step before meaningful log analysis can begin, or the analysis method must scrub such data as 

part of its processing.  Very large log files introduce scaling problems such as memory 

exhaustion, and log filtering is a necessary part of log file analysis. 

System failure doesn’t necessarily imply a crash.  In the security domain, a failure is an 

intrusion and a successful intrusion often leaves few indications of its occurrence.  In their 

amusingly titled “Fear and Logging in the Internet of Things” Wang and colleagues [40] describe 

methods for intrusion detection in home automation systems, using carefully instrumented code 

and formatted log statements.  Their “ProvThings” provides centralized auditing of log events 

and activities.  They provide a method for detecting and tracing intrusions by exposing exploited 

weaknesses. 

On very large networks, the log files become too large for human derivation of an operational 

model from the events.  Aiming to improve developer understanding of complex systems and aid 

in debugging, Ivan Beschastnikh [6] presents three log analysis tools that generate finite state 

machine (FSM, DFSM) models of systems by parsing and analyzing the system event logs.  His 

method requires only a set of regular expressions for parsing the logs.  His toolset provides 

methods for converting the parsed logs into state machines, inferring models of the underlying 

operational system.  These methods break the system down into communicating finite state 
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machines exchanging data using FIFOs.  The models produced enhance human understanding of 

these systems.  

2.6 Commercial and Open Source Tools 

Processing large amounts of stored supercomputer log data searching for patterns that might 

indicate a significant alert or alarm is a research topic and the focus of several commercial and 

open-source log management tools.  Oliner and others [41] introduce the NodeInfo tool, which 

tokenizes unstructured log data, and then uses techniques derived from Shannon’s information 

entropy [42] to determine which tokens are significant and which are merely noise.  By ranking 

log messages from each network node by information content, the tool finds significant messages 

from each node and passes them to the system administrators for investigation. 

The open source and commercial log management products provide aggregation and analysis 

services. For the most part they focus on real-time anomaly detection for network monitoring 

security (e.g.  intrusion detection) and node failure.  They allow the user to add custom log 

parsers that are specific to the data formats produced by the specific applications and services 

running on the network.  All of them run as a log server application on a network node, accepting 

log data from the other nodes via UDP sockets, filtering and then saving the data on the server’s 

file system. 

ELK is one such open-source tool [43].  Originally composed of three open-source projects, 

Elasticsearch, Logstash, and Kibana (hence the acronym), ELK provides log search, log storage 

management, and log visualization.  It now includes other services, but the main purposes are 

security, monitoring, and reporting.   
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Marketed as an “enterprise log management tool”, Graylog is another open-source log 

service [44].  It also provides for log storage, search, and log viewing.  Accepting UDP or TCP 

connections other network nodes, it is also purposed toward security, monitoring, and reporting. 

SPLUNK [45]is a very popular commercial tool for log management and analysis and 

provides similar sets of services as ELK and Graylog. 

Targeting the network administrator as their user instead of the developer, none of these tools 

are geared toward product debugging or product troubleshooting.  They require considerable 

configuration effort and may monopolize at least one network node while doing their work.  By 

gathering logs from multiple network nodes on a single server they can also increase network 

traffic in the user’s local or wide area network as the log data are forwarded, which may be 

undesirable. 

2.7 Contributions 

Tabulating the above in Table 1, we see the contributions of the various authors and the value 

added by this project. 

 Table 1 - Contributions 

 

Author  

Grammar 
Based 

DFA 
Automated DFA 

Generation 
Failure 

Detection 

Sequence 
Error 

Detection 

Employs off 
the shelf 

components 

Hanka (this paper) Y Y Y Y Y Y 
Fu and others [29] N Y Y Y Y N 
Andrews & Zhang [8] N Y N Y N N 
Memon [25] Y N N Y  N N 
Barringer, Groce [11] N Y N Y Y N 
Johnston [5] N Y N Y Y N 
Stearley [16] N N N Y N N 
Vaarandi [18] N N N Y N N 
Van der Aalst [36] N N Y Y N N 
Beschastnikh [6] N Y Y N N N 
Gurumdimma [38] N N N Y N N 
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From all of the above we can see that only Fu’s group automatically generated a DFA for 

recognizing event sequencing errors or differences in an event log.  The others either require 

manual specification of a recognizer, or find clusters of messages that might precede a 

previously known failure, not previously unseen messages or temporal errors in the sequence.  

Fu’s group produces results closest to what we desire, using intense text mining methods. But 

we want something fast and simple for use during system testing, which will quickly create 

recognizers for specific test case logs.  The tool must also be quickly adaptable to an individual 

user’s logs.   
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METHOD 

3.1 Why Grammars? 

Our goal, again, is to use the event log output from a set of successful test executions to find 

where a known failing test execution begins to go awry.  We are building a tool for generating a 

program that accepts, recognizes, the successful test case logs and rejects the log from the failing 

tests.  Our tool is fast, easily adaptable to an individual user’s environment, uses an off-the-shelf 

parser generator,  and quickly generates a recognizer for individual test cases. 

When one thinks of recognizers one is immediately drawn to the concept of regular 

languages and their equivalent finite state recognizers.  We can represent a single event log as a 

long, but non-repeating regular expression; a simple list of events.  Even though timing and 

scheduling variance may reorder the event sequence from one test to another, if we have 

multiple, but similar event logs from a set of successful tests, we can create a union of regular 

expressions to create a recognizer for all of them. 

If each unique event in a log is mapped to a unique symbol, a log file can be represented as a 

simple sequence of symbols, which can be represented as a simple regular expression without 

loops and repetitions.  Since our tests are of finite length, the associated expressions are also of 

finite length, and we therefore need not concern ourselves with reducing repeated sequences of 

symbols into shorter expressions with looping constructs.  We can use available language 

processing software to create and then recognize unions of these long regular expressions, 

rejecting a log that doesn’t conform to these combined expressions. 
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To accomplish this we need a way to parse the events in a log into their constituent parts, 

place those parts in a set of lists or a database, then use that saved content to generate a 

recognizer for the regular language represented by the sequences of events in the logs.  The 

common language processing software employs context-free grammars as input.  We are, 

therefore, led to using a grammar-based solution to process the successful event logs into a finite 

automaton and a grammar for representing that finite automaton when processing the failing log 

or logs. 

Why use a grammar instead of just writing a large set of regular expressions?  Because there 

are commonly available tools for computer language processing accepting a grammar as input, 

but not for regular expressions.  The language tools combine lexical analysis, parsing, and 

processing into a single input file, making the method easy to use.  The generated output 

grammar, when fed to the same tools, automatically creates the recognizer for the log file with 

little extra work required.  Much more work is involved with regular expressions, and they are 

much harder for the average human to read. 

In addition, the more inclusive log file format we have chosen, RFC 5424, has a set of fields 

allowing user extension of the log file contents, structured data, which are more difficult to 

represent and parse with simple regular expressions.  A grammar represents these fields more 

naturally and easily. 

And finally an open-source Syslog ANTLR grammar is available for us to employ and 

modify, making use of pre-existing work [46]. 
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3.2 Logs, Grammars, and Finite Automata 

An event log is a sequence of text messages written by a group of programs into a common 

file.  Each event in the log can be described by a formal grammar or even a regular expression.  

If we assign each unique event a symbol, the sequence of events in the log forms a string of 

symbols.  For a finite test case, the log is of finite length, the string of associated symbols is 

finite and can be described as a simple list: a regular expression with the symbols as its alphabet, 

but without repetitions or loops.   

We want a finite state recognizer that will accept such a list from a set of successful test 

execution logs and reject lists from a test failure with improper or unexpected event sequences.  

The salient issue with such a recognizer is that the sequence of log messages generated from 

multiple executions of a given test can be very long in similar but slightly varying order.  

Hardware devices or multiple servers might take longer to respond to a given set of stimuli, and 

the temporal ordering of the responses may vary from one test to the next causing a change in the 

recorded order of events.  We must generate a recognizer that accepts these variations from the 

successful tests. 

But to even get to the recognizer itself, we must first provide a method for uniquely 

identifying the events in the log and assigning them unique symbols that the recognizer can 

process as an alphabet.  For this step, we turn to a grammar. 

In 1956, Noam Chomsky described a formal notation for systems of rewriting rules that 

generate combinations of words forming acceptable sentences or sequences in a specific 

language [47].  In these formal grammars Chomsky first focused on natural spoken languages 

but his research branched into applications in computer programming languages [48],  which was 

expanded by Backus [49].  Since then the concept of a “language” has diverged to include 
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anything representable as a constrained sequence of symbols such as jazz music chord 

progressions [50], and DNA sequences in molecular biology [51].   

When we say a grammar generates all possible sequences of words in a language, we imply 

that the grammar can be employed to recognize those same sequences, an insight provided by 

Backus.  We employ a grammar that generates generic RFC5424 log events to create another 

grammar that generates a specific set of RFC5424 log events in a specific ordering.  We also take 

advantage of the representation of a sequence as a regular expression [52], which can be 

transformed into a minimal state DFA [53]. 

A grammar is a set of production rules that define transformations of strings, sequences of 

symbols, in a formal language.  Formally, a grammar, G, generates a set of strings and is 

composed of  

N: A set of non-terminal symbols that are not included in the strings formed by G 

∑: A set of terminal symbols, sometimes called an alphabet and disjoint from N 

P: A set of production rules mapping one set of strings to another.  The rules are of the form; 

(Σ ∪ 𝑁)∗𝑁(Σ ∪ 𝑁)∗ → (Σ ∪ 𝑁)∗ 

 Where * denotes the Kleene star operator specifying zero or more repetitions of an 

expression, and ∪ represents a set union. 

S: A distinct starting symbol that is an element of the set N. 

The production rule definition P states that any, possibly empty, string of terminal and non-

terminal symbols prefixing at least one non-terminal symbol and followed by any string of 

terminal or non-terminal symbols maps to another string of terminal or non-terminal symbols.   
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A grammar G is therefore usually represented as a tuple: 

𝐺 = (𝑁, ∑, P, S) 

Quoting Appel [54], “a language is a set of strings, each string a finite sequence of symbols 

taken from a finite alphabet”.  For event log processing we can restrict ourselves to context-free 

grammars where each production in the grammar describing the language is of the form: 

𝑠𝑦𝑚𝑏𝑜𝑙 → 𝑠𝑦𝑚𝑏𝑜𝑙 𝑠𝑦𝑚𝑏𝑜𝑙 𝑠𝑦𝑚𝑏𝑜𝑙 … 𝑠𝑦𝑚𝑏𝑜𝑙 

There is always a single non-terminal symbol on the left-hand side of each production.  The 

terminal symbols or tokens come from the alphabet ∑, the non-terminal symbols in N appear on 

the left side of a production in P but are not in the alphabet or in the strings produced by the 

grammar, and no token in ∑ appears on the left side of a production.  We must relax that rule a 

bit when defining ANTLR grammars because the tokens must be defined someplace as some 

character or sequence of characters for lexical analysis. 

This brings up the question of what is in the set of symbols we are trying to recognize with 

our grammar, which we cover in Section 3.5.  But before we get to that, we must understand 

finite state machines and how they relate to language processing. 

3.3 The Finite State Machine as a System Model 

Several of the researchers mentioned above use event logs to synthesize finite automata of a 

process, system, or software component.  We have already mentioned Fu and others [29] 

creating log keys and then finite state machines for performance modeling.  Roder’s group uses 

event logs from semiconductor manufacturing equipment to synthesize finite state machines 

(FSMs) for operational modeling [55].  Cook and Wolfe describe methods for engineering 

process discovery from process logs, modeling the processes as deterministic finite automata or 
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DFAs [56], another term for finite state machine.  We want to synthesize a recognizer, a DFA or 

FSM, for event sequences filtered from logs recorded during successful test executions. 

To avoid confusion, note that DFA, FSM, and finite state recognizer all refer to the same 

software construct.  We do not include Harel state charts [57] or their UML variations since 

these constructs, with their sub-states and decision branching cannot be represented by a regular 

expression. 

A graphical representation a very simple finite state machine is shown in Figure 2.   

 

Figure 2 - Simple Finite State Machine 

 

This machine accepts a sequence of symbols, (e0, e1, e2, e3) and then stops.  It recognizes 

(e0, e1, e2, e3).  Although it is simplistic, this is the type of linear machine we derive from a 

single test log, with e0 representing log event 1, e1 representing log event 2 and so forth. 
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If we have multiple, differing logs from multiple successful executions of that test we might 

have something like the machine shown in Figure 3.  This machine recognizes two similar 

sequences (e0, e1, e2, e3) or (e0, e2, e1, e3).  If we have two test event sequences that start and 

end on the same event, (e0 and e3), but some of the events arrive in a different order, we could 

use a recognizer like this. 

 

Figure 3 - Simple FSM Union 

 

In the system test logs, we are given only event logs from successful test sequences and we 

are interested in detecting where an unsuccessful test execution goes awry.  We cannot, 

therefore, use negative results to create our recognizer.  But we are not interested in using 

grammar inference to generate a complete description of all acceptable event sequences for a 

given test case.  We want to construct a recognizer that identifies the events and event sequences 
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most likely in a specific test scenario and then use that recognizer to find deviation points in logs 

from failing test cases.  The failures are first detected by automated test scripts, and we want to 

detect where the system, and therefore the log, begins to exhibit aberrant behavior before the 

failure occurs. 

A finite state recognizer can be expressed as an equivalent regular expression.  It is possible 

to create a regular expression for an event log from a successful test case execution and convert 

that expression into a DFA.  For multiple successful test executions, we can create a union of the 

regular expressions from successive test cases, convert the union into a DFA, and then minimize 

it [58] [59]. 

At the risk of being repetitive, we want an automatic method for generating the DFAs from 

the sequences of events we find in the event logs, but we also want to take advantage of existing 

tools.  Lex and YACC [60], for example, allow specification of sequences of complex 

expressions with an input grammar and will generate a recognizer for the sequences.  But their 

parsing method is LL(1), limiting the types of expressions they will accept and we would have to 

minimize the expressions in the grammar before feeding them to the tools. 

Although there are algorithms for converting a DFA back into a regular expression such as 

state removal and Brzozowski’s algebraic method [61] [62] [63], the output of these methods is 

repetitive and contains redundancies.  Generating a minimal regular expression from a 

minimized finite state machine is known to be NP-hard and PSPACE hard [64] [65].  This is an 

issue if we want to use LEX and YACC type parser generators to create our recognizer because 

of the limitations of LL(1) parsers.  
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ANTLR allows us to sidestep this problem with its LL(*) capabilities, which allow an 

indefinite look-ahead in the input.  We can generate several very similar regular expressions and 

represent them in a single rule as a disjunction.  When processing such a rule, ANTLR builds a 

minimized DFA for the expression.  When processing the failure log as input, ANTLR will 

backtrack on failure and to find a matching expression in the set of disjunctions or fail when all 

possibilities have been exhausted. 

3.4 Choice of Log Format 

The symbols we pass to our generated DFA are the events from the logs, not just the UTF-8 

characters written into the log file.  Each individual event becomes a symbol in our alphabet.  

We therefore require a fixed format for the messages so that we can map them to symbols.  

Because we must parse and classify the events before symbol mapping, this brings us to the 

question of event format. 

Even though event logs are now acknowledged as a necessary component of information 

systems in general, there is no generally employed standard for the messages.  Event log 

requirements are seldom specified in the overall requirements of a system.  The event logs are 

often added after the fact, most often when a component is being unit tested because the 

developer needs runtime debug information, or when the system itself is being integrated. The 

log output is added by the programmers as needed for error diagnosis and correction. 

This lack of a standard has spawned a plethora of different log file formats. Indeed, the 

Linux log file navigator program, lnav, supports more than thirty [66]. But there is no standard 

that most organizations follow except when specified by a system requirement for security or 

evidence auditing guidelines [67].  The IETF defines at least two, RFC5424 [68] for the syslog 

format and  RFC 3164 [69] for the old BSD Syslog Format replaced by RFC5424.  Then there 



 

29 
 

are Apache Commons Logging [70], the Microsoft Common Log File System [71],  the W3C 

Log Format [72], and the W3C Extended Log Format [73]  There are also XML and HTML 

formats such as Microsoft’s EVTX [74] and Java Log4j’s HTML option [75], but we are not 

considering them here because of their larger space and time requirements.  In embedded 

systems where bandwidth and storage are limited, the use of storage space and CPU bandwidth 

for logs must be considered [76].  The use of the extra space and bandwidth employed for XML-

style tags and field labeling may be prohibitive. 

We have chosen RFC5424 format for use within our tool because it is a standard, 

contains virtually all the data fields in the other forms, is compact compared to the XML and 

HTML forms, its structured data fields make it extensible by the user, and because there are tools 

and parsers available for processing it. 

We can now proceed with a discussion of grammars for processing these logs and 

grammars for accepting them. 

3.5 Events to Tokens and Grammars 

Loosely speaking, an event log is a text file recorded by a set of application programs 

running in some execution environment.  The file is usually encoded in UTF-8 [77] or USASCII 

[78], where each line in the file represents something significant to a software developer writing 

the application.  Sometimes the event, the line of text, is required by a network or security 

standard.  An event might record a hardware state change, an application program state change, 

or an application failure or error.  As mentioned earlier, the event is often only of significance to 

the software developer writing the application. 
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The log files are composed of a sequence of lines separated by new-line characters or 

sequences, with each line describing some event.  Regardless of the forms, each event in the 

event log contains a time stamp, a set of source identifiers, a priority or level, and an arbitrary 

description of the event defined by the developer. 

All the log formats define events with these fields, which specify when an event 

happened, which application on a specific server recorded the event, its priority, and a 

description of what happened.  These are the when, who, and what elements of a log entry.  For 

example, a simple event log entry or event might resemble Figure 4, taken from the log of a 

network packet switch: 

 

The figure shows the timestamp (2017-09-30…), the set of source identifiers, the level 

(INFO), and the description (CMM:vcmCMM...).  This example is based on the form specified 

by RFC 3164, the BSD syslog format [69].  Another example is shown in Figure 5. 

The RFC5424 syslog format is more complex than the older RFC 3164 specification, but 

it also contains more information and is extensible by the user.  A breakdown of the message in 

Figure 5 is shown in Figure 6. 

 

2017-09-30T10:00:13.988 x3 swlogd vcmCmm chas_sup INFO 
CMM:vcmCMM_cs_handle_app_ready@5019: vfc ready (chassis 0, slot 65, appid 143, pid 3544) 

Figure 4 - Event log example, loosely based on RFC 3161 

<16>1 2018-05-22T11:32:30.458Z MEDORA-DUT1 intfCmm - - [@aleLog327655 logger="swlogd" 
subApp="Mgr"] cmmEsmUpdateInterfaceDynamicInfo: 2/3/14: adminStatus=1, autoNego=1(0,0,0,0), 
splitterMode=0, linkStatus=2,linkChangeTime=15270 

Figure 5 - Example RFC5424 Event 
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We can see from these examples that an event is a tuple consisting of a timestamp, a 

priority, something identifying the network host where the event originated, an identifier for the 

originating application on that host, a process ID, a message ID, some user or application 

specific structured data, and finally the log message text describing what happened. 

The RFC5424 document formally describes an event, a “Syslog Message”, in Augmented 

Backus Naur Form [79].  We show a small sample in Figure 7: 

Conveniently, by its use of ABNF, RFC5424 provides a path for constructing a context-

free grammar that will generate the events.  And even more conveniently for us, Otto Fowler 

[46] defined such a grammar for the ANTLR tool, which we employed to generate a parser for 

these events.  We modified Fowler’s grammar and the ANTLR generated parser code to develop 

part of a tool chain that creates a finite state recognizer for event logs for successful test cases.   

SYSLOG-MSG = HEADER SP STRUCTURED-DATA [SP MSG] 
HEADER = PRI VERSION SP TIMESTAMP SP HOSTNAME 

SP APP-NAME SP PROCID SP MSGID 

Figure 7 - RFC5424 Syslog Message ABNF Sample 

<16>1      : Priority and version 
 
2018-05-22T11:32:30.458Z   : Timestamp 
 
MEDORA-DUT1     : Host name  
 
intfCmm     : Application name 
 
-      : Process ID (unused here, replaced with “-“ 
-      : Message ID (unused here, replaced with “-: 
 
[@aleLog327655 logger="swlogd" subApp="Mgr"] : Structured Data (System Specific) 
 
And finally the message itself followed by a new line character: 
 
cmmEsmUpdateInterfaceDynamicInfo: 2/3/14: adminStatus=1, autoNego=1(0,0,0,0), splitterMode=0, 
linkStatus=2,linkChangeTime=15270 <NL> 

Figure 6 - RFC5424 Event Log Field Descriptions 
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Since we are describing the events in the form of a grammar, an event tuple can be 

defined as a production as shown in Figure 8. 

Since an event log is simply a sequence of one or more events, we have a simple rule for 

the log itself, as shown in Figure 9. 

 

 

We have further restrictions however.  Timestamps in a log must be ordered, for 

example, where the timestamp for a given entry in a log is always less than or equal to its 

predecessor’s time stamp, a requirement for sorting and merging. 

All the fields in an event are text strings, and there are a limited number of strings for all 

the fields because there are a limited number of hosts, applications, and processes in the network 

and because the log file is of finite length.  The timestamp is not dependent upon the source that 

𝑒 ← 𝑝𝑟𝑖𝑉𝑒𝑟 𝑠𝑝 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 𝑠𝑝 ℎ𝑜𝑠𝑡 𝑠𝑝 𝑎𝑝𝑝 𝑠𝑝 𝑝𝑖𝑑 𝑠𝑝 𝑚𝑖𝑑 𝑠𝑝 𝑠𝑑𝑎𝑡𝑎 𝑠𝑝 𝑚𝑠𝑔 𝑛𝑙  

Where  

𝑝𝑟𝑖𝑉𝑒𝑟 : the priority and version of the event 
𝑠𝑝  : a space character used to separate the fields in the event 
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝:time the event occurred 
ℎ𝑜𝑠𝑡 : name or IP address of the network host where the event occurred 
𝑎𝑝𝑝 : application program identifier for the application program that 

recorded the event 
𝑝𝑖𝑑  : process ID of the recording application 
𝑚𝑖𝑑 : message ID for the log message 
𝑠𝑑𝑎𝑡𝑎 : structured data associated with the event 
𝑚𝑠𝑔 : text describing the event 
𝑛𝑙  : a new-line character marking the end of the event 

 

Figure 8 - Event Tuple Grammar Rule 

𝐿 ← 𝑒ା 

Figure 9 - Event Log Grammar Rule 
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recorded the event, but all the others are.  There is a fixed, maximum number of priVer strings 

defined in the RFC5424 standard.  And since there are a limited number of applications 

generating output in a log, there are a limited number of event descriptions in a given log.  These 

limitations imply that a relatively small database can store the strings for each event field from 

the entire log. 

It must also be noted that some event data from the same event may naturally vary from 

execution to execution, excluding the timestamp which must change by its definition.  These 

variable data may include local measurements, such as air temperature, or process IDs, IP 

addresses, and so forth.  We must, therefore, provide some method of identifying these values 

and replacing them and ignoring them when the logs are processed. This method is described in  

Section 3.9 below. 

And since we are garnering these logs from system testing, we are also assuming that 

repeated executions of the same test are being run on the same device or system under test, with 

an identical configuration.  For a given set of test logs, the hardware configuration and network 

configuration does not vary between tests. This restriction can be softened by the addition of 

additional variable substitution rules, also described in Section 3.9. 

To tie this back to Chomsky’s grammar tuples, we can define our two grammars with 

some common elements.  In our first grammar which processes the event logs from our 

successful test executions into a second grammar, we can write  

𝐺 = (𝑁, ∑, 𝑃, 𝑆) 

Where  

𝑁 : The set of non-terminals defined in Fowler’s ANTLR grammar [46]. 
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∑ : The set of UTF-8 characters allowed by RFC5424 

𝑃 : The set of productions defined in Fowler’s ANTLR grammar. 

𝑆 : The starting event in the successful event log file being processed. 

This grammar will process any well-formed RFC5424 event log file. 

For the generated grammar, we are much more restrictive in that we must accept only 

previously processed sequences of events accepted by 𝐺 above.  In addition, the generated 

grammar rules must accept events with the variable fields replaced by an expression.  The set of 

non-terminals, 𝑁, must be replaced by another set 𝑁, whose members map to sets of string 

constants previously encountered in the successful test logs. 

For our generated grammar we have: 

𝐺 = (𝑁 , ∑, 𝑃 , 𝑆) 

Where  

𝑁 : A set of non-terminals defining a set of expressions mapped to a set of constants 

taken from the successful test event logs. 

∑ : The set of UTF-8 characters defined in RFC 5424 (as above) 

𝑃 : The set of productions taking the non-terminals in 𝑁to the set of constant strings 

in the logs. 

𝑆 : The starting event in the successful event log file being processed, translated into a 

non-terminal in 𝑁. 
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For example, if our successful event log has a single event as shown in Figure 10 we get 

a set of productions like this for 𝑃. 

 

For our set of non-terminals, 𝑁, we get 

 

Our starting symbol is the single event in the log file, 𝑆 = 𝑒0. 

The terminal symbols, the actual log file text, associated with each of the non-terminal 

symbols can be stored in ordered lists after each successful test execution log file is processed.  

These lists can serve as part of the input for processing the log from the next test execution 

allowing us to give a common set of identifiers for the common text strings over the successful 

tests.  Since the events from successive test executions are generated by a common set of 

 𝒆𝟎 ← 𝒑𝟎 𝒔𝒑 𝒕𝒔 𝒔𝒑 𝒉𝟎 𝒔𝒑 𝒂𝒑𝒑𝟎 𝒔𝒑 𝒅𝒂𝒔𝒉 𝒔𝒑 𝒅𝒂𝒔𝒉 𝒔𝒑 𝒔𝒅𝟎 𝒔𝒑 𝒎𝒔𝒈𝟎 𝒏𝒍 

 𝒑𝟎 ← "<16>1" 

 𝒉𝟎 ← "𝐌𝐄𝐃𝐎𝐑𝐀-𝐃𝐔𝐓𝟏" 

 𝒂𝒑𝒑𝟎 ← "𝐢𝐧𝐭𝐟𝐂𝐦𝐦" 

 𝒎𝒔𝒈𝟎 ← "𝐜𝐦𝐦𝐄𝐬𝐦𝐔𝐩𝐝𝐚𝐭𝐞𝐈𝐧𝐭𝐞𝐫𝐟𝐚𝐜𝐞𝐃𝐲𝐧𝐚𝐦𝐢𝐜𝐈𝐧𝐟𝐨: 𝟐/𝟑/𝟏𝟒: 𝐚𝐝𝐦𝐢𝐧𝐒𝐭𝐚𝐭𝐮𝐬 = 𝟏, 𝐚𝐮𝐭𝐨𝐍𝐞𝐠𝐨 =

𝟏(𝟎, 𝟎, 𝟎, 𝟎), 𝐬𝐩𝐥𝐢𝐭𝐭𝐞𝐫𝐌𝐨𝐝𝐞 = 𝟎, 𝐥𝐢𝐧𝐤𝐒𝐭𝐚𝐭𝐮𝐬 = 𝟐, 𝐥𝐢𝐧𝐤𝐂𝐡𝐚𝐧𝐠𝐞𝐓𝐢𝐦𝐞 = 𝟏𝟓𝟐𝟕𝟎" 

 𝒔𝒑 ← " " 

 𝒅𝒂𝒔𝒉 ← ”-“ 

 𝒔𝒅𝟎 ← ”[@𝐚𝐥𝐞𝐋𝐨𝐠𝟑𝟐𝟕𝟔𝟓𝟓 𝐥𝐨𝐠𝐠𝐞𝐫 = "𝐬𝐰𝐥𝐨𝐠𝐝" 𝐬𝐮𝐛𝐀𝐩𝐩 = "𝐌𝐠𝐫"]“ 

 𝒕𝒔 ← fulldate CAP-T fulltime 

 

Figure 10 - Sample Generated Grammar Productions 

𝑁 = {𝑒0, 𝑝0, ℎ0, 𝑎𝑝𝑝0, 𝑚𝑠𝑔0, 𝑠𝑑0, 𝑠𝑝, 𝑑𝑎𝑠ℎ, 𝑡𝑠, 𝑓𝑢𝑙𝑙𝑑𝑎𝑡𝑒, 𝑓𝑢𝑙𝑙𝑡𝑖𝑚𝑒} 

Figure 11 - Generated Grammar Non-terminals 
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applications processing similar input, the number of events is limited, and the number of text 

strings associated with each event is also limited. 

As part of our process, we must include a user-implemented step of converting the log 

into a format acceptable by the tool.  Because RFC 5424 is user-extensible through its structured 

data fields, almost any user’s native form can be converted with no data loss.  

3.6 Process 

Our tool-chain must process our training logs, the successful test execution logs, into 

something recognizable by our ANTLR grammar, convert the logs into another grammar, and 

generate a recognizer for those logs and only those logs.  This generated recognizer processes the 

logs from a failing test case and halts when the failing log deviates from the expected sequence 

of log messages as defined in the training logs. 

For each successful test execution, the process involves: 

a) Converting the logs into a common format as specified in RFC 5424.  The user 

must provide a translator for this.  We provide a C++ language example. 

b) Merging and sorting the logs from different hosts.  This is easily done with a 

simple python script, which we provide.  

c) Creating the regular expressions for the variable fields.  The user must provide 

this, but it isn't very much effort.  We provide a standard set of expressions that 

the user can modify. 

d) Removing the variable fields and replacing them with regular expressions.  This is 

done automatically as part of the parsing and grammar generation with the user 

supplied file. 
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e) Trimming the first test execution log, (manual step),  

f) Trimming the subsequent test execution logs.  This is an automatic step included 

with the translating grammar processing 

g) Generating the final grammar.  This is done automatically. 

h) Trimming the failure case log using the provided test log parser.  This is done 

automatically also in the generated grammar code. 

i) Processing the failure case log.   

There are only a few steps that require coding or manual action by the user, which are 

providing a program for translating the logs into RFC5424 format, creating the variable 

replacement regular expression file, and trimming the log from the first successful test execution.  

These are steps a, c, and e above. The other steps just involve executing the provided tool chain 

with the correct command line arguments for each of the other steps. 

The following sections describe the use of ANTLR and a grammar for processing an 

event log, and then the process itself. 

3.7 Event Log Contents 

As each successful test execution log is processed, we add to a small database of string 

definitions defining all the events in the log files.  Memon [25] enumerated the unique 

combinations these strings as “forms” and our grammar definitions perform the same functions. 

3.8 Event Sequencing 

What Memon left out was the temporal relationships between the entries in the logs, 

leaving the sequences of the events in the logs undefined.  His method could detect previously 
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unseen events, but could not detect missing events, unexpected multiple occurrences of events, 

or events that were out of sequence from previously processed sequences. 

To accomplish this sequencing, we add another rule to the grammar defining the 

sequences of events seen in the successful test execution logs.  If we add a second event to our 

hypothetical event log, we will have two events as shown in Figure 12, noting that only the 

message text is different between the two events. 

After a single test execution with such a log, our list of non-terminals will include 

something like Figure 13, where 𝑒1 and 𝑚𝑠𝑔1 represent the differences between the two events: 

 

We must add a new rule to the set of productions to show the event sequence as shown in Figure 

14 - Grammar production main rule with two events: 

 

As each successful event log is processed, new non-terminals may be added if new events 

are encountered, and the main rule must be augmented to include those new events, and to 

<16>1 2018-05-22T11:32:30.458Z MEDORA-DUT1 intfCmm - - [@aleLog327655 logger="swlogd" 
subApp="Mgr"] cmmEsmUpdateInterfaceDynamicInfo: 2/3/14: adminStatus=1, autoNego=1(0,0,0,0), 
splitterMode=0, linkStatus=2,linkChangeTime=15270 
 
<16>1 2018-05-22T11:32:30.459Z MEDORA-DUT1 intfCmm - - [@aleLog327655 logger="swlogd" 
subApp="Mgr"] cmmEsmUpdateInterfaceDynamicInfo: 2/3/15: adminStatus=1, autoNego=1(0,0,0,0), 
splitterMode=0, linkStatus=2,linkChangeTime=15270 

Figure 12 - Simple Event Log with two events 

 𝑁 = {𝑒0, 𝑝0, ℎ0, 𝑎𝑝𝑝0, 𝑠𝑑0, 𝑚𝑠𝑔0, 𝑠𝑝, 𝑑𝑎𝑠ℎ, 𝑡𝑠, 𝑓𝑢𝑙𝑙𝑑𝑎𝑡𝑒, 𝑓𝑢𝑙𝑙𝑡𝑖𝑚𝑒, 𝒆𝟏, 𝒎𝒔𝒈𝟏 } 

Figure 13 - Non-terminal List for Two Events 

 𝑚𝑎𝑖𝑛𝑅𝑢𝑙𝑒 ← 𝑒0 𝑒1 

Figure 14 - Grammar production main rule with two events 
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produce a new event sequence 𝑚𝑎𝑖𝑛𝑅𝑢𝑙𝑒 which is the union of the previous sequences as shown 

in Figure 15: 

 

Note that this takes advantage of ANTLR’s LL(*) lookahead capability.  We can have 

unions of very similar expressions.  When the ANTLR parser encounters a conflict, it will 

backtrack and try the other expressions in the union until a match is found, which may not work 

with parser generators such as YACC or Bison. 

3.9 Variable Replacement 

Because of natural variations in the ambient environment and in a network configuration, 

there are some variations between otherwise identical events in a log during successive test 

executions.  For example, in an embedded system, a fan speed controller might measure the air 

temperature and log the measurement in the event log as it makes fan speed decisions and 

adjustments.  IP addresses might vary from execution to execution as addresses are allocated by 

a local DHCP [80] server on a LAN.  A process ID (PID) for a given task might vary from 

execution to execution.  Variations in these fields will prevent the grammar from correctly 

identifying identical events between test executions, and these variable text strings must be 

replaced by either a constant string or by some expression that the grammar will interpret as 

equal. 

At the same time, we want the generated grammar to identify events in an unmodified 

failing execution test log.  The generated grammar must, therefore, include expressions that 

allow translation of the variable fields in the failing log as it is processed.   

𝑚𝑎𝑖𝑛𝑅𝑢𝑙𝑒 ← (𝑒0 𝑒1 𝑒2 𝑒3 … 𝑒𝑛) | (𝑒0 𝑒1 𝑒3 … 𝑒𝑛) | (𝑒0 𝑒3 … 𝑒𝑛 ) 

Figure 15 - Augmented Sequence Production From Multiple Test Executions 
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There are several approaches to this problem. For example, Fu’s group [29] used a rough 

scan of the logs to find the variable strings in the log keys and eliminate them from the processed 

log strings.  Memon [25] generated a report for user examination and allows the user to 

categorize the changed events for inclusion in his grammar. 

The solution we employ parses the event message text into individual words, uses concise 

regular expressions to identify the strings being replaced, and replaces the strings with an 

expression that can be processed by ANTLR.  ANTLR cannot process complex regular 

expressions and attempting to introduce them creates ambiguities and maintenance issues in the 

grammar.  But we can use very complex and concise regular expressions to preprocess each 

event message using the C++ std::regex library and convert these into more limited expressions 

that ANTLR will process.  Since the simpler expressions replace a stronger regular expression 

within a strictly defined constant string, the chance of an erroneous identification in the failing 

log file is reduced. 

These substitutions are test and application dependent and must be provided by the user.  

We provide and employ a user-modifiable input text file containing a set of regular expressions 

that we want to identify along with the corresponding ANTLR expression to be inserted and the 

definition of that expression.  The file format consists of 3-line groups with the form in Figure 

16: 

 

 

The <regular expression> is a regular expression in the format recognized by most of the 

regular expression libraries, in particular the C++ std::regex library.  The <nonTerminalName> 

repl: <regular expression> 
replWith: <nonTerminalName> 
antlrExp: <nonTerminalString> 

Figure 16 - Replacement File Format 
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is the string that will replace the identified regular expression, and the <nonTerminalString> is 

the expression that will appear in the output grammar.  For example, an IP address can be 

identified and replaced by the expressions in Figure 17. 

The complex regular expression labeled “repl” will precisely match an IP version 4 

address in standard dot form with limits on the octet ranges.  The string labeled “replWith” 

replaces the matched string with the non-terminal “ipAddr”, and the string labeled “antlrExp” is 

output in the generated grammar as a non-terminal definition of the form “ipAddr: number 

PERIOD number PERIOD number PERIOD number”.  The grammar contains a non-terminal 

named “number” identifying a decimal or hexadecimal number, and a terminal named 

“PERIOD” identifying a period (.). 

To complete the example, if an event contains the message text “accepting connection 

from 192.168.40.4”, it is replaced with “accepting connection from “ ipAddr.  The output 

grammar has rules as shown in Figure 18: 

 

 

The word delimiters are white space characters, equals symbols (“=”), parenthesis, and 

the percent symbol. 

msg52: ‘accepting connection from ‘ ipAddr; 
ipAddr: number PERIOD number PERIOD number PERIOD number 

 
Figure 18 - Grammar Rule Variable Substitution 

repl: (25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-
9]?[0-9])\.(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9]?[0-9])\.(25[0-5]|2[0-4][0-
9]|1[0-9][0-9]|[1-9]?[0-9]) 

replWith: ipAddr 
antlrExp: number PERIOD number PERIOD number PERIOD number 

 

Figure 17 - IP Address Replacement 
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3.10 Log Trimming 

As shown in Figure 19, an event log doesn’t start and stop with the beginning and end of 

a test case.  The system under test was operating and generating events before the test case 

execution started and continued to operate after the test case finished, and the log therefore 

contains extraneous events forming a junk prefix and junk suffix of events before and after the 

test case events.  We must trim these entries from the event logs of each successful test case 

before generating the grammar.  For the failing test case we must trim the only the prefix since 

the failing log has an unknown terminating identifier and we cannot tell where it might end.  

 

 

 

 

If we assume that the user has trimmed the first log file such that the first event is the test 

starting event and the last event in the log is the final event in the test case, we can map the event 

identifier sequence in the first log file onto a long string of wide characters.  If we convert the 

event identifier sequences in the second, third, and nth log files into strings of wide characters, 

we can use the Levenshtein distance [81] (edit distance) to find the substring in the nth log with 

the closest match to the first log’s wide character string and use that to trim the junk prefixes and 

suffixes from the later test executions.  We can use this same technique to trim the prefix from 

the failure case log file before using the generated grammar to process it. 

If the first, user-trimmed successful event log, L0 is a sequence of events, each identified 

by a symbol: 

ej ej ej es ex ex ex ex ex ex ex en ej ej ej 

Junk prefix Junk suffix 

 Test Case Events 
Start 
Event  

Final 
Event  

Figure 19 - Event Log Junk Prefix and Suffix 
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𝐿 = 𝑒 𝑒ଵ 𝑒ଶ … 𝑒ିଵ 𝑒 

We can map the events 𝑒, 𝑒ଵ, 𝑒ଶ … 𝑒to a sequence of wide characters, 32-bit numbers, 

𝑤, 𝑤ଵ, 𝑤ଶ … , 𝑤 simply by using the index on each event as the wide character.  

For the second successful log file, we will have: 

𝐿ଵ = 𝑃ଵ 𝑒 𝑄ଵ 𝑒 𝑆ଵ 

Where 

𝑃ଵis a junk event prefix of events 𝑃ଵ =  𝑒 𝑒 … 𝑒௫,  

𝑒 is the event that starts the test, 

𝑄ଵ is the log event sequence from the second test execution starting one symbol after the test 

starting event and one event before the ending event, a string of events that is similar to 

the sequence 𝑒ଵ, 𝑒ଶ … 𝑒ିଵ  

𝑒 is the event that ends the test, 

𝑆ଵ is the junk event suffix appended to the end of the test 𝑆ଵ =  𝑒 𝑒 … 𝑒௫௫,  

We must note that the event string 𝑄ଵis some event string that is like the string 

𝑒ଵ 𝑒ଶ … 𝑒ିଵ from the first test but is not equal to it, since the same test is being executed again 

with some change in timing and system response causing a variation.  If the second test event 

sequence is identical to the first, we can discard it. 

If we map the sequence of events from the first log file, 𝐿 = 𝑒 𝑒ଵ 𝑒ଶ … 𝑒ିଵ 𝑒, to a string 

of wide characters 𝑊 = 𝑤 𝑤ଵ 𝑤ଶ … 𝑤ିଵ 𝑤, and we map the sequence of events from the 

second log file, 𝐿ଵ = 𝑃ଵ 𝑒 𝑄ଵ 𝑒 𝑆ଵ, to another string of wide characters, 𝑊ଵ =
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𝑊ଵ 𝑤 𝑊ொଵ𝑤 𝑊ௌଵ, then if we find the set 𝑈ଵof all substrings of 𝑊ଵ that start with end and with 

 𝑤 and end with  𝑤, and choose the substring 𝑢 ∈ 𝑈ଵwith the smallest edit distance with 

𝑊, we will have the test event sequence that most closely matches the first test event sequence 

as formalized here. 

𝑈ଵ =  {𝑢௫ :  𝑢௫ 𝑖𝑠 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑊ଵ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡 = 𝑙𝑒𝑛𝑔𝑡ℎ(  𝑢௫ ) , 𝑢௫ [0] = 𝑤 , 𝑢௫ [𝑡] = 𝑤}  

𝑢 ∈ 𝑈ଵ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀𝑢 ∈ 𝑈ଵ, 𝑢 ≠ 𝑢: 𝑒𝑑(𝑊, 𝑢) > 𝑒𝑑(𝑊, 𝑢) 

If we know the starting offset of 𝑢within 𝑊ଵ then we know the offset of the start of the 

second test sequence within 𝐿ଵand we can trim the junk prefix and junk suffix from 𝐿ଵ.    

3.11 Implementation 

The process flow for our implementation consists of log file preparation, log trimming, and 

grammar generation.  Log preparation is composed of several steps, and the user must provide 

for two of them.  Similarly, the user must trim the first test case log, but subsequent test case logs 

are trimmed automatically.  The grammar generation is performed automatically. 

The log preparation involves translating the event log files from hosts in the system under 

test into RFC 5424 format, merging the event log files into a single file, then filtering the 

resulting file to remove data from applications that are not relevant to the user’s analysis.  The 

user must provide a program for translating the log for which we provide examples.  We provide 

a short Python program for merging the files.  The user must then filter out extraneous events 

from the resulting merged file, which is easily done using the grep utility or one like it.   

All the other steps are automatic and are provided as part of the tool. 
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The user may also provide the variable replacement regular expression file, although we 

provide a file that handles floating point numbers, IP addresses, MAC addresses, dates, time 

stamps and 32-bit integers. 

3.12 Log Preparation 

The log preparation data flow is shown in Figure 20.  The steps are log file translation, log 

file merge, log file filtering, and then log file trimming.   

 

Figure 20 - Log Preparation Data Flow 

These steps are largely site specific.  The user must provide the translation program from 

hist native format into RFC5424, although this program should be reusable from one test case to 

the next, assuming that common log file formats used between test cases and programs writing to 

the log.  The user must also provide the arguments for grep to filter the input file sources to the 
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set of interest, and the user must trim the first filtered log.  We provide a table-driven Python 

program that will automatically generate BASH scripts to perform the steps above. 

We describe these steps in the next sections. 

3.13 Log File Translation 

The user must provide a program for converting native log files into RFC 5424 form. The 

commercial and open source log servers, e.g. SPLUNK and Graylog, require a user provided 

parser for their native event logs.  We decided to require user provision of a simple translator 

program which converts native logs into RFC 5424 form, which our tool will then process. 

A simple translator program is much simpler than a parser or grammar.  For example, for 

our experiments, the translator program converting an old BSD syslog derivative format to RFC 

5424 form was less than 200 lines of C++ code, much of which is housekeeping such as file I/O 

and header file inclusion. 

Since raw event logs from different hosts must be uniquely identifiable for incorporation 

into the output grammar file and those hosts might be running the same programs, our example 

translation program allows input of a user parameter, which is output in the RFC5424 structured 

data on each event.  If the events on different hosts generated by the same application are 

identical, a host identifier can be inserted into the structured data to differentiate logs from 

different sources before the log is processed as shown in the highlighted text in Figure 21. 

<16>1 2018-05-22T11:32:30.458Z MEDORA-DUT1 intfCmm - - [@aleLog327655 host="chassis1_CMMA" 
logger="swlogd" subApp="Mgr"] cmmEsmUpdateInterfaceDynamicInfo: 2/3/14: adminStatus=1, 
autoNego=1(0,0,0,0), splitterMode=0, linkStatus=2,linkChangeTime=15270 

Figure 21 - User data inserted during log translation 
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3.14 Log File Merging 

After translation to the RFC5424, a common, provided merge program can be used to 

combine the event log files from multiple hosts into a single large event log for incorporation 

into the grammar.  This is a very short Python program using the heapq library functions to 

merge the logs using the timestamp in the log files.  It is only 79 lines in length including white 

space and comments.   

Because the Python library reads the entire file into memory, this small merge program 

may have the scalability issues like those described in section 4.3 below. 

3.15 Log File Filtering 

When a test execution fails, the failure is assigned to a specific developer for analysis.  

Only that developer knows which applications are pertinent to the failure, and we leave it to that 

developer to remove the events from “uninteresting” applications.   

This can be done with a simple grep command, selecting only those events containing 

application names that are of interest to the inquiring developer.   

There are other utilities available, like the Linux log file navigator, lnav [66], that can be 

of assistance in this in finding the strings for use in the grep filtration command line and can 

even perform the filtration itself.  But lnav requires SQL select statements, and grep is easier to 

use than SQL, at least for those not regularly using SQL.  And, of course, to execute an SQL 

command like “select * from syslog_file where log_procname = ‘ChassisSupervisor’” one must 

already know to search for the string “ChassisSupervisor”, so use of a log file navigator like lnav 

may be counterproductive.  It is, therefore, expected that the user knows which application 

events to choose to begin the analysis. 
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Figure 22 is an example of a grep command line for filtering four applications from a 

merged log in a Linux environment. 

 

3.16 Log File Trimming 

As mentioned in section 3.10 above, the user must trim the merged log file from the first 

successful test execution such that the first and last events in the file are the first and last events 

of the test case.  This must also be done by the user.  For the second and following successful test 

executions, the log files are trimmed automatically by the tool. 

3.17 Log Preparation Script File 

Of course, all these steps except the trimming can be put into a script so that the user 

need not key them in repeatedly.  But since the filtering and translation must be provided by the 

user, a general purpose script is not possible unless we force the user to use a fixed set of 

programming and executable file naming conventions. 

We chose not to enforce such restrictions, but we do provide an example Python 

language program that inputs a configuration file and outputs a BASH shell script that will 

execute the log file preparation steps using the parameters in the configuration file.  This 

program also outputs a BASH shell script that executes the grammar generation and failure file 

processing described in following sections.   

grep -i -e chassissuper -e mip_gateway -e bfdcmm -e ses log1.log > log1.filtered.txt 

Figure 22 - Grep filtering command example 
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3.18 Grammar Generation 

The grammar generation involves processing the log files from each successful test case, 

which builds up a set of intermediate files containing the unique event data and generates an 

ANTLR grammar file.  This grammar file is then fed as input to ANTLR, which generates a set 

of C++ source files for the successful event log parser.  These files are, in turn, compiled and 

linked.   

The failing test case event log file can then be input by the generated parser and its 

internal DFA will reject the failing event log, stopping on the first event that is out of sequence. 

The grammar generation itself process is shown in Figure 23 and in Figure 25. 

 

 

Figure 23 - Grammar Generation Data Flow 

As each successful event log file is processed, a set of intermediate data files is 

constructed as shown in Figure 24.  These data files contain, in sequence, the unique RFC 5424 

fields from all the events after the variable substitution.  As each subsequent successful test case 
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log is processed, the events in the subsequent logs are matched against the previously discovered 

events. 

 

Figure 24 - Grammar Generation 

The individual log file record processing during grammar generation is illustrated in 

Figure 25.  When the grammar generation starts, the data from previous successful test logs are 

read.  Then as each event from the test is read and parsed into fields, the variable data are 

replaced by regular expressions, and the event is either matched against a previously seen event 

or added as a new event to the data lists.   

At the end of the event log file, the event sequence is trimmed to remove the junk 

prefixes and junk suffixes and an ANTLR grammar file is generated with a new set of event 
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sequences and event definitions.  The main rule in the generated grammar is the union of the 

sequences from the previously processed logs and the latest event log processed. 

 

Figure 25 - Grammar Generation Process 

When the log from the failing test case is processed, it too must be trimmed to remove its 

junk prefix and junk suffix.  We employ our RFC5424 grammar to process the failing test log 
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into events and trim it before passing it to the generated grammar.  The trimming process is 

shown in Figure 26. 

 

 

Figure 26 - Failure Log Trimming 

3.19 ANTLR Grammar Class Structure 

The ANTLR runtime library and the ANTLR generated C++ code provide the basic 

parsing functions and the base classes for grammar-specific processing. 
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The class structure is shown in Figure 27. 

 

 

Figure 27 - Grammar Generator and ANTLR Runtime Components 

The ANTLR runtime library contains the base classes for the parse tree, the parse tree 

walker, the parser, the listener, the lexical analyzer, and the token stream.  The listener contains 

virtual functions that are executed whenever a rule in the grammar is detected.  It is “listening” 

for the grammar rules as they are processed by the parser. When an ANTLR grammar like our 
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RFC5424 grammar is processed ANTLR generates grammar-specific subclasses for the parser, 

listener and lexical analyzer. 

We provide a main module and a subclass of the listener.  The main module processes 

command line arguments and creates the parser and parse tree walker objects.  It also creates our 

sub-classed listener object, then calls the tree walker to start the parsing. 

The sub-classed listener, RFC5424BaseListenerPruner, is the grammar generator.  As a 

sub-class of the ANTLR generated RFC5424BaseListener class, it contains virtual functions that 

are called as each rule in the RFC5424 grammar is entered and exited.  These virtual functions 

create and manage all the intermediate files described above, identifying the events, and 

recording the event sequences in each of the successful test log files. 

When the grammar main rule exits, the exitMainRule virtual function uses the stored data 

to trim the event sequence, creates the output grammar file and rewrites the intermediate files 

from its stored data.  The intermediate files are then available for processing the next successful 

test event log. 

  As mentioned previously, the edit distance algorithm is a modification of [82] to input 

wide-character strings and to compile and link with C++ 14.  The ANTLR grammar is a 

modification of [46]. 

3.20 Generated Grammar 

As described above, each unique event in the event log is identified as a concatenation of 

a set of strings, each string corresponding to a field in the RFC5424 event record except for the 

timestamp, which is used only for sorting the logs in the merge step.  Each unique string set is 



 

55 
 

assigned an identifier that reflects the position in the log where that event was first detected (e.g. 

e0, e1, e2, etc). 

The generated grammar contains a top-level rule, mainRule, which is a union of 

sequences of these identifiers.  This main rule defines the DFA, the finite state recognizer for the 

successful test event logs, which ANTLR minimizes when the generated grammar is processed 

and transformed into the LL(*) recognizer for the grammar. 

A section from a generated grammar is shown in Figure 28. 

When ANTLR processes the generated grammar, it outputs another set of C++ files, 

which are used to process the failing event logs directly.  But the failing log file must also be 

trimmed to get rid of its junk prefix.  Since the failing log terminates abnormally, it will not 

contain the terminating event, and we cannot remove its junk suffix.  We can, however, trim the 

prefix to the correct starting event with the closest edit distance match to the first successful test 

case for the rest of the main rule sequence. 

As mentioned above we must trim the failing test case log and we provide a trimming 

function within the RFC5424 listener subclass that will parse the failing log into a sequence and 

grammar xxx; 
 
mainRule: 
( 
e0 
e1 
e2 
… 
); 
e0: pri0 SP timestamp SP host0 SP appId0 SP procId0 SP msgId0 SP structuredData0 msg0 NL ; 
e1: pri0 SP timestamp SP host0 SP appId0 SP procId0 SP msgId0 SP structuredData0 msg1 NL ; 

Figure 28 - Generated Grammar Segment 
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use the main rule sequence to find a sequence that starts with the starting event and has a 

minimal edit distance between the rest of the log file and the generated grammar’s sequence.  

The trimming function writes a new event log that starts with the correct starting event instead of 

writing out a modified grammar. 

The processing of the failing event log is shown in Figure 29. 

 

 

Figure 29 - Failing Log Preparation and Processing 

The difference from the successful log preparation and processing is that instead 

of moving on to generate a grammar, we output a trimmed failure log that the previously 

generated grammar can process. 
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3.21 Error Handling 

Once a deviation is detected, it must be reported in a useful manner.  Useful in 

this case is locating the point in the error log file where the deviation occurs and 

displaying what was expected vs. what was found.   

The ANTLR Java and C++ default error handler functions are overridden in our 

generated log processor program.  The function arguments provide the list of rules 

processed before the error was detected, as well as the line number and character offset 

within the line where the parsing halted.  This information and the trimming event line 

numbers are all we need to provide our user with the event log context to begin problem 

diagnosis. 

Since we know that the error log matches at least one of the successful test logs 

up to the point of failure, we can display the lines from that offset adjusted by the 

trimming line numbers from the successful test logs to give the user an idea of what the 

error test case should have recorded. 

When the grammar halts, we execute the emacs text editor a command to position 

to the line in question.  We open other emacs windows showing the lines at the same 

offset in the training log.  See section 3.22 on the user interface below. 

3.22 User Interface 

The user interface is provided through a Python language programs and a set of 

text editors.  The Python language program accepts a list of successful test log files, the 

failing log file, and a grammar name.  It then executes the rest of the process in the proper 

sequence.  It passes the successful logs to the main program for generating the failure log 
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ANTLR grammar file, compiles the generated grammar into C++ files, compiles and 

links the generated C++ files into an executable program, and then executes the program 

with the failure log as input.  When the program halts on the failure log, the Python 

program parses the output and opens text editor windows for the input files at the line 

number where the generated C++ program stopped. 

 

./processTestLogs.py -g april23 -i "apr23CS.log apr23CS-1.log" -f apr23CSBad.log 
grammar name is  april23 
file names are  apr23CS.log apr23CS-1.log 
file list is  ['apr23CS.log', 'apr23CS-1.log'] 
command is  ./Rfc5424Parse -i apr23CS.log -o april23.g4 -n 
input file is apr23CS.log 
output file is april23.g4 
Removing temporary files 
command is  ./Rfc5424Parse -i apr23CS-1.log -o april23.g4 --trimInput 
java -jar /usr/local/lib/antlr-4.7-complete.jar -Dlanguage=Cpp april23.g4 
sed 's/xxx/april23/g' templateMain.cpp > april23Main.cpp 
g++ -std=c++0x -g -c april23Main.cpp -I. -I /mnt/c/PraxisResearch/antlr/antlr4-cpp-runtime-
4.7.1-source/runtime/src 
g++ -std=c++0x -g -c april23Listener.cpp -I. -I /mnt/c/PraxisResearch/antlr/antlr4-cpp-
runtime-4.7.1-source/runtime/src 
g++ -std=c++0x -g -c april23BaseListener.cpp -I. -I /mnt/c/PraxisResearch/antlr/antlr4-cpp-
runtime-4.7.1-source/runtime/src 
g++ -std=c++0x -g -c april23Lexer.cpp -I. -I /mnt/c/PraxisResearch/antlr/antlr4-cpp-runtime-
4.7.1-source/runtime/src 
g++ -std=c++0x -g -c april23Parser.cpp -I. -I /mnt/c/PraxisResearch/antlr/antlr4-cpp-
runtime-4.7.1-source/runtime/src 
g++ -o april23Parse -g april23Main.o april23Listener.o april23BaseListener.o april23Lexer.o 
april23Parser.o /mnt/c/PraxisResearch/antlr/antlr4-cpp-runtime-4.7.1-source/dist/libantlr4-
runtime.a 
Process error command is  ./april23Parse -i apr23CSBad.log.trimmed --stopOnError 
Error scan  ['input file is apr23CSBad.log.trimmed\n', 'output file is 
default_outfile.txt\n', 'Line: 940 : 112\n', "Error: Can't choose between alternatives\n"] 

Figure 30 - Example Log Processing Execution 
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Figure 31 - Text Editor Window Positioned to Log Failure Point 
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TESTING 

4.1 Testing Methods 

The tool was tested with event log files taken from linked network packet switches 

running integration tests and system tests in a software test lab for a commercial product.  Failure 

cases were generated by injecting errors into the logs from successful tests either by removing 

events, rearranging events, and by adding previously unseen events.  In addition, failure cases 

reported in the lab by the test organization were employed when such logs were available. 

To test the log trimming existing prefix and suffixes from the gathered test cases were 

left in place, with the first log in the test sequence being manually trimmed as described above. 

A total of 8 test cases were executed and the execution times for each processing step are 

shown in Table 2. 

Table 2 - Test Characteristics and Execution Times 

Test 
# 

Number 
of Test 

Executions 

Events 
per Test 

Execution 
(average) 

Generated 
Grammar 

Size 
(Lines) 

Log Processing 
Time 

(Seconds) 

Compile 
Time 

(seconds) 

Total Time 

1 3 4406 16932 20.96 232.45 261.97 
2 4 1444 7447 12.51 78.87 95.16 
3 5 1766 11003 20.284 107.63 128.58 
4 4 1590 8769 47.52 129.49 179.09 
5  2 4556 12981 23.02 280.98 

 
312.34 

 
6 4 8290 17592 1495.784 

(25 Minutes) 
57.61 1,556.22 

(25.93 Minutes) 
7 2 10435 23617 49.46 216.13 271.99 
8 2 240 1412 5.65 35.59 42.19 
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All tests were executed on a Dell Inspiron 5570 laptop computer with an Intel Core i7-

855U CPU running at 1.8 GHz and 16 GB of installed RAM.  The tests were executed in a 

Ubuntu Linux 16.04 virtual machine running under 64-bit Microsoft Windows 10 Pro. 

4.2 Performance 

This method is intended to assist in locating of deviations from normal sequences in logs 

from a failing test when logs from one or more successful executions of the same test are 

available.  We use the logs from the successful tests to create a finite recognizer for the 

successful test cases.  We then use that recognizer to find where the failing test case deviates 

from the successful test execution.  Since it is intended to aid the developer in real-time, the tool 

must generate output quickly from the collected event logs. 

As shown in Table 2, the grammar generation and test log processing took less than six 

minutes in most cases, which is acceptable.  The exceptions to this were in test cases where the 

log contained many hundred instances of the starting event, causing hundreds of executions of 

the log trimming algorithm.  Since this algorithm is of complexity 𝑂(𝑛ଶ) over the size of the log, 

the log trimming time dominated the processing time.  But even so, it still took less than 30 

minutes, which is not extreme. 

4.2.1 Log Preparation Time 

The log preparation is composed of log translation, log filtering, and log merging, and 

trimming the log for the first successful test case.  We provide software for all of these steps 

except for the initial log trimming.  The user is expected to provide a program for log translation 

into RFC 5424 form, but this program need only be created once per organization, since the logs 

within an organization will most likely share a common form. 
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Since most of our test cases were created artificially by injecting differences and then 

errors into successful test case logs taken from an industrial packet switch, the log preparation 

time for creating those test logs is skewed.  We were, however, able to collect and separate 

multiple successful execution logs from two problem reports in a commercial test environment. 

The log preparation for both of these cases took in excess of thirty minutes each, which is 

acceptable but still somewhat burdensome. 

4.2.2 Log Trimming Performance 

We employ Levenshtein’s Edit Distance algorithm [81] to find the wide-character 

substring of a successful test case log event sequence giving the closest match to the wide-

character sequence in the manually trimmed successful test case log.  We do this by assigning a 

symbol to each unique event in the two logs and compare those symbols instead of the event text 

strings themselves. 

For example, if a log contains 1,000 lines with 200 of those being unique, then we have a 

sequence that is 1,000 symbols in length with 200 unique symbols in the sequence.  We compute 

the edit distances using these symbol strings instead of the individual characters in the lines in 

the event log. 

This algorithm runs in 𝑂(𝑚𝑛) time and in 𝑂(𝑚 + 𝑛) space, where 𝑚 is the length of the 

first string and 𝑛 is the length of the second string [83].  We reduce the number of executions of 

the algorithm by only considering strings that start and stop with the same symbol as first and 

last symbols in the manually trimmed test case.  We search from the start of the log for the first 

symbol and work backwards from the end of the log to find the last symbol. 
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If the first and last symbols are uncommon in both logs, which one expects in a test case 

with some starting command and some ending result, then the number of executions is relatively 

small.  If the first and last symbols are common then the number of executions increases, 

increasing the time required to trim the log. 

We tried this with logs with various characteristics and recorded results one would expect 

as shown in Table 3. 

Table 3 - Log Trimming Time 

Test Number Number of 
Events 

Number of start 
symbol 

repetitions 

Total Log File 
Processing Time 

Trim Execution 
Time 

Log 
Processing 

Time 
1 258 1 42.19 Seconds < 1second 5.65 seconds 
2 10435 3 272 Seconds 4.03 seconds 49.46 

seconds 
3 8290 719 1,556.22 

(25.93 Minutes) 
1476.31 seconds 

(24.6 minutes) 
22.3 
Seconds 

 

The total log processing time includes the generated grammar C++ compile and link 

time, which on larger files is appreciable.  Even for shorter log files, the C++ compilation time 

was larger than the log file processing itself.  The log processing time includes the trimming 

time. 

Test number 3 above demonstrates that proper choice of starting events is important.  If 

the test case log contains multiple instances of the starting event, the trimming time goes up 

substantially because of the number of executions of the edit distance algorithm. 

Each execution of the edit distance algorithm on a 10,000 event file takes approximately 

1.6 seconds to execute on a 1.8 GHz Dell Inspiron Laptop with 16 GB of RAM.  In test case 4, 

there were 719 instances of the start symbol in the failing test case log, and the trimming took 

more than twenty minutes.  
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4.3 Scaling issues using ANTLR 

Scaling problems with even small logs showed themselves early during this project.  The 

first problem was with the generated Java language code.  ANTLR’s default output language is 

Java, and ANTLR creates one Java class for each rule in the grammar, wrapping these within a 

larger containing class.  This causes the generated Java source files to balloon in size, not to 

mention creating hundreds of “.class” files from a single source file during compilation.  The 

Java virtual machine limits an individual Java member function to 65,534 bytes [84]4, and the 

ANTLR generated Java code would not compile for even relatively small log files. 

Because of the Java language limit we moved to generating C++ code instead of Java.  

ANTLR version 4 will generate C++ code, and C++ does not have this method size limitation.  

The GNU C++ compiler, g++, version 5.04 will compile generated parser files for grammars 

generated from 10,000 line log files.  But we run into difficulties elsewhere.  With a file greater 

than 30,000 events in length, the C++ compiler gets segmentation faults when processing the 

ANTLR generated parser files because ANTLR generates strings of constants larger than the 

g++ compiler’s internal limits.   

There are scaling issues within ANTLR itself.  With files of 40,000 events the Java 

runtime library throws an array element out of range exception during the C++ code generation.  

If there are too many unique log messages we see similar Java runtime failures.  And with very 

large log files there are memory exhaustion issues on a 16 GB laptop running Ubuntu 16.04 as 

the parse tree grows larger than the memory size.  With an average event length of 150 bytes, 

                                                 
4 From the Java Virtual Machine specification“The fact that end_pc is exclusive is a historical mistake in the design 
of the Java Virtual Machine: if the Java Virtual Machine code for a method is exactly 65535 bytes long and ends 
with an instruction that is 1 byte long, then that instruction cannot be protected by an exception handler. A 
compiler writer can work around this bug by limiting the maximum size of the generated Java Virtual Machine code 
for any method, instance initialization method, or static initializer (the size of any code array) to 65534 bytes.” 
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ANTLR runs out of memory with about 200,000 events.  ANTLR reads the entire input file into 

the system memory and there will, therefore, always be memory exhaustion issues for files that 

approach the system memory size.  Terence Parr and the ANTLR authors provide unbuffered 

streams in their Java runtime to reduce ameliorate this problem, but the functions did not make it 

into the ANTLR C++ runtime library as of this writing (see [85] pages 246-248). 

There is also an issue with the ANTLR DFA data structures.  The ANTLR runtime 

employs a C++ standard template library bit set (std::bitset) within each DFA node to mark 

transitions on a given event.  When the run-time library is compiled, the number of bits in a 

bitset is included as a fixed constant.  If the number of distinct events in a log exceeds the 

number of bits in the bit set, then log file processing will fail with a run time exception.  The 

ANTRL C++ runtime source specifies the bitset size as 1024 bits. 

Depending upon the user’s environment, this number may be exceeded in moderately 

large logs, depending, among other parameters, how many applications outputs are included in 

the filtered log and how the variable fields in each event are replaced as the events are processed.  

This was the case in one of the test cases in Table 4, with more than 10,000 events in the logs, 

and more than 1024 distinct events.  To avoid this limitation we recompiled the ANTLR runtime 

with a larger constant in its bitset definition, increasing the constant from 1024 to 4096. 

For our system test cases, a 30,000-line combined log file maximum is adequate since the 

logs are filtered down to events generated by a subset of the applications executing during the 

test.  Table 4 illustrates event counts for individual applications included in a small set of error 

reports or test cases on a multi-chassis network packet switch.  The tests all failed after more 

than one successful iteration, and the event counts are averages. 
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Table 4 - Test Case Application Event Counts 

Problem 
Report # 

CS 
 

VCM INTFCMM VLAN 
MGR 

Port 
Mgr 

SVC 
CMM 

STP 
CMM 

IPV6 ISIS 
VC 

1 2226 755 1737 62 93 182 133 105 101 
2 2195 655 1721 462 131 129 946 11 103 
3 3509 1303 2116 100 186 293 240 56 153 
45  360 125 287 32 26 101 94 86 13 

 

In short, these methods work with log files containing less than 30,000 events provided 

that the number of unique log messages per test is less than 2,000.  If we must process test 

sequences with more than 30,000 events for a single application subset, we must avoid 

generating a very large C++ lexer and parser file.  See chapter 5 below for alternative methods 

which can handle larger event log files. 

4.4 False Positive and False Negative Indications 

Because the generated grammar is not, and indeed cannot be complete the problem of 

false positive and false negative detection must be addressed.   

A false positive is produced when the log file from the failing test execution event 

sequence diverges from the successful test execution sequences in multiple places before failing 

outright, where one of the branches is from a previously unseen but normal timing variance.  If 

the first divergence  is from such a normal divergence that doesn’t indicate an error, it must be 

ignored and the second divergence employed for determining the actual failure. The generated 

DFA will detect at least two errors and the user must know to examine both of them.  

A false negative occurs when the DFA ignores a divergence that is an actual error.  This 

might occur if a successful execution masks the error in the failing execution.  When a test case 

                                                 
5 This was a regression test consisting of a sequence of 75 tests executed consecutively.  The data shown reflect an 
average over the 75 tests. 
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halts with an error, we know that the test script program detected the error and the test didn’t 

complete successfully. But the false negative in our tool indicates there is no divergence in the 

log from the successful test executions.  The DFA was traversed from its starting state to its final 

state without an error, and therefore the event sequence exactly matched one of the successful 

test execution logs. 

This may happen if the user interface or system output read by the test script is incorrect, 

but the flow of events in the log follows one of the successful test cases.  This is actually fairly 

likely in the case of a simple computational programming error, and the use of our method to 

locate the source of the error may not be warranted.  Only the developer examining the error 

report can determine if this is the case. 

To verify the false positive cases we executed 50 random line insertions and deletions on 

a log file with 1080 events and executed the generated parser for that log file test case.  For 

single line insertions and deletions, there were no false positives, which is what was expected. 

For multiple line insertions and deletions, the generated parser halted on the first insertion. 
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CONCLUSIONS AND FUTURE WORK 

We have demonstrated that the methods we employed for locating faults in event logs are 

effective within certain limits.  That is, given a set of event logs from successful test executions 

in a specific test environment, we can use those logs to create a recognizer for those successful 

test executions that will halt and display the area in the logs where the failure occurred.  We have 

demonstrated processing the logs into that recognizer and processing a failing log can be done in 

a few minutes for filtered log files on the order of 10,000 events. 

But we have sidestepped a few issues.  Test coverage is one, and scalability another.  And 

another issue is acceptance within a software development organization, a process and corporate 

political issue. 

Test coverage, the question of whether the DFA derived from successful test logs is 

robust enough to ensure that the generated DFA halts on a real deviation rather than on some 

legitimate event is difficult.  As part of our problem definition we know that the log from the 

failing test contains a failure.  We also know when the failure is detected by the generated DFA 

while processing the failure log that there has been some behavioral deviation from the 

successful cases.  We do not know whether the first point of deviation detected by the DFA is the 

start of an actual failure, or if the real failure occurs somewhere later in the event log.  Because 

test budgets are limited, resources are limited, and the number of test executions necessary to get 

complete coverage is unknown, increasing the certainty in this area is expensive.  We also know 

from other work that deriving a complete grammar for a large text only from successful test 

cases is impossible. 
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The scaling problem described in section 4.3 presents an opportunity for improvements. 

For filtered files less than about 200,00 events we can still allow ANTLR to create the in-

memory parse tree, but we must generate a simpler grammar and employ an external DFA to 

determine where the failing test log goes awry. 

For the external DFA, there are several open-source implementations available.  An 

elegant Java implementation by Anders Moeller [86] at Aarhus University, “bric.dk”, is available 

and will process Unicode characters in its alphabet.  Unicode is a 16-bit character encoding, 

allowing up to 64,000 symbols, or 64,000 different log messages in our grammar.  The bric.dk 

DFA can be called from our C++ listener classes using the Java Native Interface (JNI) [87], or 

we could switch our generated listener code to Java and call it directly.  

Alternatively, a partial C language implementation of the bric.dk finite automaton, libfa, 

is available as part of David Lutterkort’s Augeas package [88].  But this finite automaton 

employs only 8-bit UTF-8 characters, which are not sufficient for our purposes.  It appears to be 

modifiable to use C-language wide character types (wchar_t) and therefore useful as a 

recognizer.  Linked with the generated C++ parser and lexer, the libfa DFA can be used to 

process the very large expressions that recognize an event log file. 

Implementing either of these involves a modified data flow:  

1. Translate and filter the successful test log as above. 

2. Use the Rfc5424 grammar with ANTLR to process the successful test log files, 

creating the internal databases identifying each log event as above. 

3. Functions for processing the individual records in the file are very similar to the 

implementation above, except that the exitMainRule function (see above) does not 
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generate a grammar.  It simply writes out the internal database for all the events 

processed including the sequences of log messages encountered in the successful test 

cases. 

4. The log file trimmer will work as in the pure ANTLR grammar above. 

5. The failure log processing employs a fixed ANTLR RFC5424 grammar with listener 

functions that 

a. Read the generated internal files identifying the previously discovered events and 

sequences. 

b. Construct a DFA for the discovered sequences by creating and minimizing a 

union of the sequences from the successful test cases. 

c. Identify each input event as it is read from the failure log and passes it to the DFA 

functions where it is either accepted or rejected. 

d. If the input event is rejected by the DFA it identifies the point of failure. 

The state of the DFA contains a set of expected transitions which are reported to the user 

allowing output such as “unexpected event <event text> - expected <event list>”.  This method 

allows reuse of almost all of the code we have written for the pure ANTLR implementation.   

The variable list replacement is the same as in the first method, except that the variables 

must be replaced by regular expressions instead of ANTLR grammar rules  For example, for the 

smaller event log files, we might have an RFC 5424 msg rule: 
msg403: ‘This message embeds a MAC address (‘ macAddr ‘) in the middle’; 
macAddr: hexByte COLON hexByte COLON hexByte COLON hexByte COLON hexByte COLON hexByte; 
 
hexByte : hex_0_0 | hex_0_1 | hex_0_2 | hex_0_3 | hex_0_4 | hex_0_5 | hex_0_6 | hex_0_7 | 
hex_0_8 | hex_0_9 | hex_0_a | hex_0_A | hex_0_b | hex_0_B | hex_0_c | hex_0_C | hex_0_d | 
hex_0_D | hex_0_e | hex_0_E | hex_0_f | hex_0_F |" … 
 
hex_0_0: ZERO ZERO 

Figure 32 - Example RFC 5424 variable replacement rule 
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Using this method, we eliminate the macAddr symbol and replace it with the regular 

expression recognizing MAC addresses: 

We must also scan the literal parts of each message and escape the regular expression 

delimiters before they are stored.  And for efficiency we must pre-compile the regular 

expressions as they are read.  The original grammar regular expressions were named substrings, 

but the regex library won’t work with those, requiring an in-line expression. Therefor the 

generated output must contain in-line regular expressions instead of the named strings – the 

regex variable output will not use the variable names. 

There are still scaling problems with this method but they will only show up with much 

larger log files.  If we read them into memory, we must assume that the number of event 

substrings limited to fit into the memory, which is probably the case since there are a limited 

number of applications on the switches generating them. 

Although this method is a bit more work, it avoids generating the very large ANTLR 

internal DFA for all the successful test logs, which triggers the C++ compiler segmentation fault.  

Additionally, it avoids generating the huge ANTLR grammar which causes the Java runtime 

array overruns.  It also prevents the generation of the very large Java methods, which exceed the 

virtual machine 64 KB limit, if we want to go back to generating Java code instead of C++. 

Note that the bric.dk external DFA and Augeas, the bric.dk C implementation, have the 

bitset size issue we encountered with the ANTLR C++ library. 

msg403: ‘This message embeds a MAC address (‘ ([0-9A-Fa-f]{2}[:-]){5}([0-9A-Fa-f]{2}) ‘) in 
the middle’.   

Figure 33 - Variable replacement with regular expressions 
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Also note that employing an external DFA allows reuse of most of the ANTLR grammar 

parser code we implemented for the ANTRL grammar solution. 

Another issue concerns the ability and willingness of an organization to adjust its processes 

to allow use of these methods.  The tool set we presented requires that a test organization save 

the logs after successful test executions as well as after test failures.  This requires modifying the 

automated test scripts or manual test procedures to gather the event logs from the systems under 

test after each test execution and store them.  This also requires computational time for file 

transfers, machine resources for data storage, and human resources on the part of the test 

personnel.  If those writing the test scripts and executing them are not trained software 

developers, modifying the scripts and testing the changes can be onerous.  And since software 

test budgets are constrained at least as much as software development budgets, allocating 

resources for failure diagnosis when no failure has yet occurred can be burdensome. 
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